Spatio-temporal CNN Algorithm for Object Segmentation and Object Recognition
نویسندگان
چکیده
In this paper a spatio-temporal analogic CNN algorithm is designed for front-end filtering, segmentation and object recognition. First, a generalized segmentation strategy is presented based on various diffusion models. Both PDE and non-PDE related schemes are discussed and their VLSI complexity is analyzed. In classification (object recognition) a CNN implementation of the autowave metric, a “nonlinear” variant of the Hausdorff metric, is used. This approach turned out to be superior compared to some other classification methods, e.g. the Hamming distance calculation. A number of tests have been completed within the so-called “bubble/debris” segmentation experiments using original and artificial gray-scale images.
منابع مشابه
CNN in MRF: Video Object Segmentation via Inference in A CNN-Based Higher-Order Spatio-Temporal MRF
This paper addresses the problem of video object segmentation, where the initial object mask is given in the first frame of an input video. We propose a novel spatiotemporal Markov Random Field (MRF) model defined over pixels to handle this problem. Unlike conventional MRF models, the spatial dependencies among pixels in our model are encoded by a Convolutional Neural Network (CNN). Specificall...
متن کاملSegmental Spatio-Temporal CNNs for Fine-grained Action Segmentation and Classification
Joint segmentation and classification of fine-grained actions is important for applications in human-robot interaction, video surveillance, and human skill evaluation. However, despite substantial recent progress in large scale action classification, the performance of state-ofthe-art fine-grained action recognition approaches remains low. In this paper, we propose a new spatio-temporal CNN mod...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملSegmentation Assisted Object Distinction for Direct Volume Rendering
Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an ...
متن کاملParallel Spatial Pyramid Match Kernel Algorithm for Object Recognition using a Cluster of Computers
This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, MATLAB Message Passing Interface (MPI) functions and features included in the toolbox help u...
متن کامل